
CS246 Lec11

1

CS246 1 Lec11

Today’s Goals

•  Memory management
  Dynamic memory allocation
  The heap
  Memory layout

• malloc and free
•  Other heap functions

CS246 2 Lec11

Dynamic Memory Allocation
•  The most important usage of pointers.
•  C’s data structures are normally fixed in

size, i.e. static.
  Static data structures must have their sizes

decided at time of compilation
  Arrays are good examples
  Allocated on stacks

•  Through pointers, C supports the ability to
allocate storage during program execution.

Section 1

CS246 3 Lec11

The Heap
•  The pool of memory from which dynamic

memory is allocated is separate, and is
known as the heap.

•  There are library routines to allocate and
free memory from the heap.

•  Heap memory is only accessible through
pointers.

•  Mixing statically and dynamically allocated
memory is not allowed.

CS246 4 Lec11

Memory
•  What is stored in memory?

  Code
  Constants
  Global and static variables
  Local variables
  Dynamic memory (malloc)

int SIZE;

char* f(void) {
 char *c;

 SIZE = 10;
 c = malloc(SIZE);
 return c;
}

global

local

const
dynamic

0

0xffffffff

virtual
address
space

CS246 5 Lec11

Memory Layout
•  How is memory organized?

  Code – Text
  Constants – Data
  Global and static variables – BSS
  Local variables – Stack
  Dynamic memory (malloc) – Heap

int SIZE;

char* f(void) {
 char *c;

 SIZE = 10;
 c = malloc(SIZE);
 return c;
}

global

local

const
dynamic

0

0xffffffff

Text

Data

BSS

Heap

Stack

CS246 6 Lec11

Function Call Mechanism
•  Activation record (of a function call), also

known as a stack frame
•  A block of memory that contains:

  Parameters passed to the function
  Local variables declared in the function
  Return address – pointer to the instruction to be

executed after the function call

CS246 Lec11

2

CS246 7 Lec11

Call Stack
•  A call stack is a region of memory that

manages activation records
•  The call stack is initialized with the

activation record of main
•  Activation record of a function is

  Pushed onto the stack at the function call
  Popped off the stack on return from the call

 The reason why local variables are only present
during the function call

CS246 8 Lec11

A Typical Stack Frame
• int foo(int arg1, int arg2);
•  Two local vars

Callee saved registers (as needed)

temporary storage

Caller’s EBP

Stack

local var1
local var2

Return address
arg1
arg2

EBP-8
EBP-4

EBP+8
EBP+12

Caller saved registers (as needed)

 ESP-->

CS246 9 Lec11

Stack Frame Details
•  Stack grows upwards
• ESP and EBP are registers, used to point to

the top of the stack and the base
•  Saved registers – on return:

  Callee must store return value to EAX before
returning

  Other registers must be restored if modified
during function call

CS246 10 Lec11

malloc() and free()
•  Library routines for managing the heap
•  Dynamically allocate and free arbitrary-sized

chunks of memory in any order
  void *malloc (size_t size);

Allocates a block of size bytes from the heap
Returns a pointer to the block allocated (casting to

correct type required)
size_t is an unsigned integer type used for very large

integers.
  void free (void *ptr);

• #include<stdlib.h>

Section 2

CS246 11 Lec11

Example: Allocating an int Array
int *a;
a = (int *) malloc(sizeof(int)*6);
a[5] = 3;
free(a);

•  Never attempt to free memory that has not
been previously allocated via malloc!

•  Memory allocated through malloc is not
cleared or initialized in anyway.

CS246 12 Lec11

Example: String Allocations

•  By default void* will be casted to char*,
so in fact no casting is necessary here.

char* newStr(char *str) {
 char *s;
 s = (char *) malloc(strlen(str) + 1);
 return strcpy(s, str);
}

char* newStr2(char *str, char *str2){
 char *s;
 s = (char *) malloc(strlen(s) + strlen(s2) + 1);
 strcpy(s, str); return strcat(s, str2);
}

CS246 Lec11

3

CS246 13 Lec11

Dynamic Memory Layout

0xffffffff

0 Text

Data

BSS

Heap

Stack

char *p1 = malloc(3);
char *p2 = malloc(4);
char *p3 = malloc(1);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

CS246 14 Lec11

Dynamic Memory Layout

0xffffffff

0 Text

Data

BSS

Heap

Stack

char *p1 = malloc(3);
char *p2 = malloc(4);
char *p3 = malloc(1);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

p1

CS246 15 Lec11

Dynamic Memory Layout
char *p1 = malloc(3);
char *p2 = malloc(4);
char *p3 = malloc(1);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

0xffffffff

0 Text

Data

BSS

Heap

Stack

p1

p2

CS246 16 Lec11

Dynamic Memory Layout
char *p1 = malloc(3);
char *p2 = malloc(4);
char *p3 = malloc(1);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

0xffffffff

0 Text

Data

BSS

Heap

Stack

p1

p2

p3

CS246 17 Lec11

Dynamic Memory Layout
char *p1 = malloc(3);
char *p2 = malloc(4);
char *p3 = malloc(1);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

0xffffffff

0 Text

Data

BSS

Heap

Stack

p1

p3

p2

CS246 18 Lec11

Dynamic Memory Layout
char *p1 = malloc(3);
char *p2 = malloc(4);
char *p3 = malloc(1);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

0xffffffff

0 Text

Data

BSS

Heap

Stack

p1

p2

p3 p4

CS246 Lec11

4

CS246 19 Lec11

Dynamic Memory Layout
char *p1 = malloc(3);
char *p2 = malloc(4);
char *p3 = malloc(1);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

0xffffffff

0 Text

Data

BSS

Heap

Stack

p1

p2

p3 p4

CS246 20 Lec11

Dynamic Memory Layout
char *p1 = malloc(3);
char *p2 = malloc(4);
char *p3 = malloc(1);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

0xffffffff

0 Text

Data

BSS

Heap

Stack

p1

p2,p5

p3 p4

CS246 21 Lec11

Dynamic Memory Layout
char *p1 = malloc(3);
char *p2 = malloc(4);
char *p3 = malloc(1);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

0xffffffff

0 Text

Data

BSS

Heap

Stack

p1

p2,p5

p3 p4

CS246 22 Lec11

Dynamic Memory Layout
char *p1 = malloc(3);
char *p2 = malloc(4);
char *p3 = malloc(1);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

0xffffffff

0 Text

Data

BSS

Heap

Stack

p1

p2,p5

p3 p4

CS246 23 Lec11

Dynamic Memory Layout
char *p1 = malloc(3);
char *p2 = malloc(4);
char *p3 = malloc(1);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

0xffffffff

0 Text

Data

BSS

Heap

Stack

p1

p2,p5

p3 p4

CS246 24 Lec11

void error() {
 printf(“Out of memory!\n”);
 exit(1);
}

int main() {
 int **a, r, c, i, j;

 scanf(“%d”, &r);
 if ((a =(int **)malloc(sizeof(int *)*r)) != NULL){
 scanf(“%d”, &c);
 for (i=0; i<r; i++) {
 if ((a[i]=(int *)malloc(sizeof(int)*c)) != NULL)

{
 for (j=0; j<c; j++)
 a[i][j] = i*c + j;
 }
 else error();
 }
 }
 else error();
 return 0;
}

Example: Allocating 2d Array

21-malloc.c

CS246 Lec11

5

CS246 25 Lec11

The Love-hate Relationship with
malloc

•  Most experience C-programmers have such
a delimma.
  malloc is fast, efficient and flexible
  The dreaded memory leak – neglecting to free

memory
  Reaching beyond malloced bounds
  Heap fragmentation – this is not really a

programming error, and is therefore even
harder to fix

CS246 26 Lec11

Other Heap Functions
•  void *calloc(size_t n, size_t size);

  Allocates space for an array with n elements, each of which is
size bytes long.

  calloc also initializes the array by setting all bits to 0.
•  void *realloc(void *ptr, size_t size);

  realloc resizes memory (pointed to by ptr, must be result
of previous call to malloc or calloc) to the new size
specified by size.

  Returns a NULL if expansion attempt fails.
  If called with NULL as 1st argument ptr, behaves like
malloc.

  If called with 0 as 2nd argument, behaves like free.

Section 3

CS246 27 Lec11

Memory Types and Allocations
•  Three types of memory

  Global and static variables – BSS – Program
start up/termination

  Local variables – Stack – Function entry/return
point

  Dynamic memory – Heap – malloc/free or
program termination

CS246 28 Lec11

Summary

•  Learn how to handle memory management
in C

• malloc and related functions are essential
to C programming

•  Learn the good habit of freeing memory
whenever possible

