
CS246 Lec12

1

CS246 1 Lec12

Today’s Goals

•  Structures
  Types and variables
  typedef
  structs and pointers

•  Unions
•  Enumerations

CS246 2 Lec12

Structures

•  To group multiple (heterogeneous)
variables

•  Similar to Java classes, but not as
powerful
  A structure has only data members
  All members are public

Section 1

CS246 3 Lec12

Structure Operations

•  Structure type declaration
•  Structure variable declaration
•  Member assignment/reference
•  Structure initialization
•  Structure assignment

CS246 4 Lec12

Structure Type Declaration
•  Pattern

  struct StructType
{ /* members
*/

 };

  Typically global

•  Members
  Analogous to data

declaration

struct Aircraft{
 char id[10];
 int x;
 int y;
 int z;
 int prevZ;
 int heading;
 int verticalSpeed;
 int speed;
};

int main() {
 /* skipped */
}

CS246 5 Lec12

Struct Instance
•  Aircraft identifies a

structure type, also
known as a structure
tag.

• a is an instance of
the structure type
Aircraft

•  Keyword struct
may not be dropped

struct Aircraft
{ /
members/

};

struct Aircraft a;

structure tag

CS246 6 Lec12

typedef
•  A way to define a synonym for existing

(complicated) types.
  typedef int Bool;
  typedef int*** Intptr3;

•  typedefed type names by convention have the
first letter in uppercase.

•  Besides programmer laziness, typedef does
contributes to portability (size_t)
  typedef long Myint;– others
  typedef int Myint;– machines with 32-bit int

CS246 Lec12

2

CS246 7 Lec12

typedef and Structures
•  This is a case of programmer laziness!
•  Instead of

struct Aircraft boeing747;

 use
typedef struct Aircraft Arcrft;

 then
Arcrft boeing747;

• Arcrft is a new user-defined type.
CS246 8 Lec12

Structure Variable Declaration
typedef struct Ac{
 char id[10];
 int x;
 int y;
 int z;
 int prevZ;
 int heading;
 int verticalSpeed;
 int speed;
} Aircraft;

int main() {
 Aircraft a, b, c;
 /* skipped */
}

struct Ac{
 char id[10];
 int x;
 int y;
 int z;
 int prevZ;
 int heading;
 int verticalSpeed;
 int speed;
} a, b;

int main() {
 struct Ac c;
 /* skipped */
}

CS246 9 Lec12

Member Assignment/Reference

•  Assignment pattern
  structVar.memberName
= exp;

•  Reference pattern
  structVar.memberName

typedef struct {
 char id[10];
 int x;
 int y;
 int z;
 int prevZ;
 int heading;
 int verticalSpeed;
 int speed;
} Aircraft;

int main() {
 Aircraft a;
 a.z = 0;
 a.prevZ = a.z;
 /* skipped */
}

CS246 10 Lec12

Structure Initialization
•  Like array initializations,

this only works at the
time of declaration.

•  Afterwards you must
assign/initialize each
member one by one.

typedef struct {
 char id[10];
 int x;
 int y;
 int z;
 int prevZ;
 int heading;
 int verticalSpeed;
 int speed;
} Aircraft;

int main() {
 Aircraft a =
 {"N3NK", 0, 0, 0,
 0, 270, 0, 0};
 /* skipped */
}

CS246 11 Lec12

Structure Assignment

•  Pattern
  structVar1 = structVar2;

•  Each member’s value will
be copied

typedef struct {
 char id[10];
 int x;
 int y;
 int z;
 int prevZ;
 int heading;
 int verticalSpeed;
 int speed;
} Aircraft;

int main() {
 Aircraft a =
 {"N3NK", 0, 0, 0,
 0, 270, 0, 0};
 Aircraft b;
 b = a;
 /* skipped */
}

CS246 12 Lec12

Additional Examples

typedef struct {

 int ssn;
 float debt;
} Person;

typedef struct {
 int type;
 int value;
 int address;
 char name[32];
} Variable;

ssn

debt

type

value

address

name

CS246 Lec12

3

CS246 13 Lec12

Complex Structures
•  Various structure

members
  Basic types: int,
double, char, etc.

  Arrays
  Pointers
  Structures

•  Arbitrary combination
possible

Section 2

typedef struct {
 int x;
 int y;
 int z;
} Position;

typedef struct {
 char id[10];
 Position pos;

 int prevZ;
 int heading;
 int verticalSpeed;
 int speed;
} Aircraft;

CS246 14 Lec12

Another Example

typedef struct {

 Position northeast_corner;

 Position southwest_corner;

 int height;

} Mountain;

CS246 15 Lec12

Array of Structures
typedef struct {
 char id[10];
 Position pos;
 int prevZ;
 int heading;
 int verticalSpeed;
 int speed;
} Aircraft;

int main() {
 Aircraft aircrafts[2] =
 { { init list for elem 0 },
 { init list for elem 1 } };

 aircrafts[0].pos.x = 0;
}

CS246 16 Lec12

Structure with Array of Structures
typedef struct {
 char id[10];
 Position pos;
 int prevZ;
 int heading;
 int verticalSpeed;
 int speed;
} Aircraft;

typedef struct {
 int numOfAircrafts;
 Aircraft aircrafts[100];
} Radar;

int main() {
 Radar r;
 r.aircrafts[0].pos.x = 0;
}

CS246 17 Lec12

Structure Arguments

•  The argument variable b is a copy of the original
variable a.

•  Analogous to basic variables, different from arrays
•  Cannot change the original variable a

Section 3

void updateStatus(Aircraft b) {
 b.heading += 90;
}

int main() {
 Aircraft a = initialization;
 updateStatus(a);
 return 0;
}

CS246 18 Lec12

Structure Return

•  The local variable b is modified and
returned.

•  The returned b can be assigned (copied) to
the original a.

Section 2

Aircraft updateStatus(Aircraft b) {
 b.heading += 90;
 return b;
}

int main() {
 Aircraft a = initialization;
 a = updateStatus(a);
}

CS246 Lec12

4

CS246 19 Lec12

Pointer to Structure

•  To modify the original value, pass the
pointer to a structure

Section 4

void updateStatus(Aircraft *b) {
 (*b).heading += 90;
}

int main() {
 Aircraft a = initialization;
 updateStatus(&a);
 return 0;
}

CS246 20 Lec12

Shorthand
•  To deal with pointers to structure, the

shorthand form is more commonly used.
•  Pattern

  StructPtrVarmember-of-structure;
void updateStatus(Aircraft *b) {
 b->heading += 90; /* same as (*b).heading */
}

int main() {
 Aircraft a = initialization;
 updateStatus(&a);
 return 0;
}

CS246 21 Lec12

•  A union, like a structure, consists of data
members.

•  The compiler will only allocate enough
space for the largest member in a union.

•  All member of a union overlay each other
(i.e. they are stored in the same address).

Unions

struct {

 int i;
 float f;
} s;

union {

 int i;
 float f;
} u;

i

f

s

f

i

u

Section 5

CS246 22 Lec12

Unions Usages
•  Mixed types

•  Tag field

typedef union{
 int i;
 float f;
} Number;

Number a[100];
a[0].i = 5;
a[1].f = 5.5;

typedef struct {
 int type;

 union{
 int i;
 float f;
 } u;
} Number;

void print(Number n){
 switch(n.type) {
 case(INTEGER):
 printf("%d",
n.u.i);

 case(FLOAT):
 printf("%f",
n.u.f);
 }

}

CS246 23 Lec12

Enumerations
•  A special type in C whose values are

enumerated by the programmer
•  A way to group a set of related #defines.

•  If unspecified, enums by default start from
0 and increment by 1

#define SUIT int
#define CLUB 0

#define DIAMOND 1

#define HEART 2

#define SPADE 3

enum {CLUB, DIAMOND, HEART, SPADE};

enum SUIT {CLUB, DIAMOND, HEART, SPADE};
SUIT s1 = HEART, s2;

typedef enum {FALSE, TRUE} Bool;

Section 6

typedef enum {CLUB,DIAMOND,HEART,SPADE} Suit;

CS246 24 Lec12

Enumerations as Integers
•  All enums are integers.
•  More flexible enum

  Specify values:
  If no value specified, value is 1 greater than the

previous constant (first constant is by default 0):

•  C allows mixing enum and int

enum REDSUIT {HEART=10, DIAMOND=1};

enum EGA {BLACK,LTGRAY=7,DKGRAY,WHITE=15};

enum {CLUB,DIAMOND,HEART,SPADE} s; int i = DIAMOND; // i is 1
s = 2; // s is HEART

i++; // i is HEART

CS246 Lec12

5

CS246 25 Lec12

Summary

• structs are much like Java’s classes.
•  Use union with care.
•  Learn how to incorporate enum into your

programming.
• enums are thinly disguised ints, and the C

compiler allows mixing.

