
CS246 Lec18

1

CS246 1 Lec18

Today’s Goals

•  Object-oriented Programming
•  Intro to C++

CS246 2 Lec18

Object-oriented Programming
•  C is not designed to write applications
•  C is also not designed to write large programs

ú  Not just a linear multiplication of code size and
programming time

•  OOP is a programming paradigm
ú  A program is composed of a collection of units

(objects)
ú  What is the traditional paradigm, i.e. C’s view?

Section 1

CS246 3 Lec18

Fundamental Concepts
•  Modularity

ú  Units are self-contained, easily identifiable and
reusable

•  Abstraction
ú  Implementation of specific functionality can be

unspecified

•  Encapsulation
ú  Internal state of the object cannot be changed in

unexpected ways

CS246 4 Lec18

Fundamental Concepts
•  Inheritance

ú  Objects maybe defined and created from
already existing ones

•  Polymorphism
ú  Allowing the same definition to be applied to

different types of data

CS246 5 Lec18

C++
•  An extension of C
•  Developed by Bjarne Stroustrup of AT&T

Bell labs in the 1980s
•  Mostly backwards compatible to C
•  Name your C++ programs with

extension .cpp or .C
•  Use g++ instead of gcc

Section 2

CS246 6 Lec18

Minor Conveniences
•  Comments – //
•  Variable declarations anywhere in a function
•  Tag names are automatically type names

ú  typedef struct _Complex {
 double re, im;} Complex;
ú  struct Complex {double re, im;};

•  Keyword void can be omitted
•  Default function arguments

ú  void new_line (int n=1) {
 while (n-- > 0) putchar('\n'); }

CS246 Lec18

2

CS246 7 Lec18

#include

•  New #include style
ú  Drop the .h
ú  Prepend c to standard C libraries
ú  using namespace std;

using namespace std;
#include <iostream>
#include <cmath>

CS246

Namespaces
•  A way to group variables and functions

under a name.
 namespace first {
 int var = 5;

 }

 namespace second {

 double var = 3.1416;

 }

 int main () {

 cout << first::var << endl;

 cout << second::var << endl;

 return 0;

 }

8 Lec18

CS246 9 Lec18

Pass by Reference
•  Pascal style declaration
•  Classic C:

•  C++:

void swap (int *a, int *b) {
 int temp;
 temp = *a; *a = *b; *b = temp;
}
swap (&x, &y);

void swap (int& a, int& b) {
 int temp;
 temp = a; a = b; b = temp;
}
swap(x, y);

CS246 10 Lec18

Other Use of References
•  A function may return a reference

•  Use reference to make a variable be another

• b’s coupling with a can not be changed

double& bigger (double& r, double& s) {
 if (r>s) return r;
 else return s;
}

double a = 1.2;
double& b = a; // b is a

CS246 11 Lec18

References in C++
•  Reference were invented for people who

really did not want to use pointers
•  References are far less flexible than pointers
•  Trying to avoid pointers by replacing them

with references can lead to bad problems
•  In general, avoid references all together and

learn to use pointers properly
•  Or use Java J

CS246 12 Lec18

Dynamic Allocation
•  Instead of malloc and free, C++ provide
new and delete and delete[]

int *int_ptr, *array_ptr;

int_ptr = new int;
array_ptr = new int[10];

delete int_ptr;
delete[] array_ptr;

CS246 Lec18

3

CS246 13 Lec18

Classes
•  A class is a declaration of a new data type
•  More powerful than struct and
typedef as it includes functions

class Fraction {
public:
 void print();
private:
 int num;
 int denom;
 void reduce();
};

void Fraction::print(){
 printf("%d/%d", num, denom);
}
void Fraction::reduce(){
 int d = gcd(denom, num);
 num /= d;
 denom /= d;
}

CS246 14 Lec18

Constructors
•  Same as Java constructors – a function with

the same name as the class itself with no
specified return type
class Fraction {
public:
 void print();
 Fraction(int n=0, int d=1){num=n; denom=d;}
private:
 int num;
 int denom;
 void reduce();
};

Fraction f(2,3);
Fraction f2(2); //Fraction f(2,1);
Fraction f3; //Fraction f(0,1);

CS246 15 Lec18

Constructors
•  Every class comes with a default constructor with

takes no arguments and does no initialization
•  A class may have multiple constructors
•  Constructors should be public!
•  A constructor may not take an object of its own

class as argument, but may take a reference to its
own class

•  A copy constructor is automatically provided if
not specified Fraction::Fraction(Fraction& f) {

 num = f.num; denom = f.denom;
}

CS246 16 Lec18

Destructors
•  Destructors are typically not called by a

programmer but left to the compiler
•  Called whenever an object is destroyed, i.e.

by going out of scope or using delete
•  Need to write destructors if you

dynamically allocate memory for your class
objects, either in a constructor or in a
member function
Fraction::~Fraction();

CS246 17 Lec18

Example
class BigStr{
 char* str; // private
 long size; // private
public:
 BigStr();
 ~BigStr();
};
BigStr::BigStr() {
 str = new char[sizeof(size_t)+1];
 str[0] = '\0';
 size = sizeof(size_t);
}
BigStr::~BigStr() {delete[] str;}

CS246 18 Lec18

Operator Overloading
•  Function overloading

ú  Multiple functions taking different types are
defined with the same name

ú  Compiler calls the right one by examining the
arguments

•  C++ allows the same for built-in operators

CS246 Lec18

4

CS246 19 Lec18

Operator Overloading
class Fraction {
public:
 ...
 Fraction operator*(Fraction f);
Private:
 ...
};

Fraction Fraction::operator*(Fraction f) {
 Fraction res;
 res.num = num * f.num;
 res.denom = denom * f.denom;
 res.reduce();
 return res;
}

Fraction f1(1,2), f2(3,4), f3;
f3 = f1 * f2;
f3.print(); //prints 3/8

CS246 20 Lec18

Strings in C++
•  C-style strings

ú  #include <string.h>

• string class provided by the standard
template library
using namespace std;
#include <string>

string fname = "Dianna", lname = "Xu";
string name = fname + " " + lname;

CS246 21 Lec18

Inheritance
•  C++ inheritance works very much the same

way as in Java
•  Constructor inheritance rules are similar to

those in Java
ú  no super(), but can invoke explicitly by name

•  Method overriding is called virtual functions
ú  Late-binding works the same

•  C++ supports multiple inheritance

CS246 22 Lec18

Example

class Figure{
public:
 void move(int xinc, int yinc);
 virtual double area();
private:
 int x, y;
};
class Circle: public Figure {
public:
 double area () {return 3.14*radius*radius;}
private:
 int radius;
};

Circle c;
Triangle t;
Figure *f = &c;
f->area();
f = &t;
f->area();

CS246 23 Lec18

Exceptions
•  Exceptions are thrown with keyword throw
•  Exceptions are less structured in C++, and

can be practically any type
•  Exceptions are caught with try{} and
catch()

double Fraction::toDouble {
if (denom == 0)
 throw ("Division by zero");
...
}

Fraction f(1,0);
double d;
try {
 d = f.toDouble();
}
catch(char* msg) {
}

CS246 24 Lec18

Access Modifiers
• public
• private

ú  In C++ default is private if undeclared

• protected
• friend – adhoc access to private variables

ú  By declaring a function or a class friend, a class
allows access to its private data members

CS246 Lec18

5

CS246 25 Lec18

I/O in C++
•  Standard C I/O still works via stdio.h
•  C++ style I/O through iostream.h

ú  cin and cout streams
ú  overloaded << and >> operators

•  Easier than printf/scanf, but not as
flexible and versatile

cout << "Enter a number: ";
cin >> n;
cout << "The square is: " << n*n << endl;

CS246 26 Lec18

Mixing C/C++
•  Generally not a good idea

ú  Use both C and C++ strings
ú  Use both references and pointers
ú  etc

•  Okay to mix in an entire functionality and
staying consistent
ú  Use only pointers but not references
ú  All C++ but with I/O entirely through stdio.h

CS246 27 Lec18

Summary

•  C++ is really a combination of C and Java
•  Use C++ in your project whenever

appropriate, especially if inheritance is
called for.

