Bspline Construction Summary

Objective of Bspline interpolation:

Given the points $\left(t_{0}, \mathrm{p}_{0}\right),\left(t_{1}, \mathrm{p}_{1}\right),\left(t_{2}, \mathrm{p}_{2}\right),\left(t_{3}, \mathrm{p}_{3}\right),\left(t_{4}, \mathrm{p}_{4}\right),\left(t_{5}, \mathrm{p}_{5}\right),\left(t_{6}, \mathrm{p}_{6}\right), \ldots\left(t_{m}, \mathrm{p}_{m}\right)$, find the coefficients, $\mathrm{c}_{j}, j=0$ to $m+n-1$ of the Bspline basis functions, $N_{j}^{n}(t)$, such that the sum,

$$
f(t)=\sum_{j=0}^{m+n-1} c_{j} N_{j}^{n}(t)
$$

produces an interpolating spline of degree n with values, $f(t)=p_{j}$ when $t=t_{i} \cdot i=0$ to m. m also represents the number of curve segments between t_{0} between t_{m}, which in the example shown above is 6 .

Determining the coefficients, \mathbf{c}_{j}, of an interpolating Bspline:

Step 1. Assemble the knot vector of the form $\lambda=\left[\begin{array}{lllll}\lambda_{0} & \lambda_{1} & \lambda_{2} & \ldots & \lambda_{m+2 n}\end{array}\right]$ containing the values of t where the polynomial curve segments of degree n are to be joined.

Note: Since $n+1$ Bspline basis functions $N_{j}^{n}(t)$ of degree n are required to be computed over each interval $t \in\left[t_{j}, t_{j+1}\right], n$ additional knot points must be defined to the left of t_{0} and to the right of t_{m} in order to enable $f(t)$ to be computed for the intervals $t \in\left[t_{0}, t_{1}\right]$ and $t \in\left[t_{m-1}, t_{m}\right]$.

Additional left side knots: $\quad t_{-k}=t_{0}-k\left(t_{1}-t_{0}\right) \quad k=1$ to n
Additional right side knots: $\quad t_{m+k}=t_{m}+k\left(t_{m}-t_{m-1}\right) \quad k=1$ to n

When $n=3$, this results in a knot vector of the form

$$
\begin{aligned}
\lambda & =\left[\begin{array}{lllllllllll}
t_{-3} & t_{-2} & t_{-1} & t_{0} & t_{1} & t_{2} & \ldots & t_{m} & t_{m+1} & t_{m+2} & t_{m+3}
\end{array}\right] \\
& =\left[\begin{array}{llllll}
\lambda_{0} & \lambda_{1} & \lambda_{2} & \ldots & \lambda_{m+2 n}
\end{array}\right]
\end{aligned}
$$

When $n=1$, the knot vector would be of the form

$$
\begin{aligned}
\boldsymbol{\lambda} & =\left[\begin{array}{llllll}
t_{-1} & t_{0} & t_{1} & t_{2} & \ldots & t_{m} \\
t_{m+1}
\end{array}\right] \\
& =\left[\begin{array}{lllll}
\lambda_{0} & \lambda_{1} & \lambda_{2} & \ldots & \lambda_{m+2 n}
\end{array}\right]
\end{aligned}
$$

For example, given the seven points $\left(t_{\mathrm{i}}, p_{\mathrm{i}}\right), i=0$ to 6 shown on the figure of the first page,
For the cubic case ($n=3$) the knot vector, λ, would take the form,

$$
\begin{aligned}
\lambda & =\left[\begin{array}{llllllllll:lll}
-6 & -4 & -2 & 0 & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18
\end{array}\right] \\
& =\left[\begin{array}{llllll}
\lambda_{0} & \lambda_{1} & \lambda_{2} & \ldots & \lambda_{12}
\end{array}\right]
\end{aligned}
$$

For the linear case ($n=1$) the knot vector, λ, would take the form,

$$
\begin{aligned}
\lambda & =\left[\begin{array}{llllllll}
-2 & 0 & 2 & 4 & 6 & 8 & 10 & 12
\end{array}\right. \\
& =\left[\begin{array}{lllll}
\lambda_{0} & \lambda_{1} & \lambda_{2} & \ldots & \lambda_{8}
\end{array}\right]
\end{aligned}
$$

Step 2. For each $i(i=0$ to $m)$, compute the set of $N_{j}^{n}\left(t_{i}\right)$ that are nonzero over the interval $t_{i} \leq t<t_{i+1}$ using the recurrence equation,

$$
\begin{aligned}
& N_{j}^{n}(t)= \frac{\left(t-\lambda_{j}\right)}{\left(\lambda_{j+n}-\lambda_{j}\right)} N_{j}^{n-1}(t)+\frac{\left(\lambda_{j+n+1}-t\right)}{\left(\lambda_{j+n+1}-\lambda_{j+1}\right)} N_{j+1}^{n-1}(t) \\
& \text { where } N_{j}^{0}(t)= \begin{cases}1 & \text { for } \lambda_{j} \leq t<\lambda_{j+1} \\
0 & \text { otherwise }\end{cases} \\
& \quad \text { and } N_{j}^{n}\left(t_{i}\right)=0 \text { when } \mathrm{t}\left\langle\lambda_{j} \text { or } \mathrm{t}\right\rangle \lambda_{j+n+1}
\end{aligned}
$$

For example, in the cubic case (i.e. $n=3$) when $6 \leq t<8$ (i.e. $t_{3} \leq t<t_{4}$), it can be determined that $j=6$, since j is found from the interval in the knot vector where $\lambda_{j} \leq t<\lambda_{j+1}$, which for this case is $\lambda_{6} \leq t<\lambda_{7}$. From the definition of the recurrence equation above, and knowing that $j=6$ allows the recurrence equation to be initialized with $N_{6}^{0}(t)=1$ and used to compute the Bsplines of degree $n=1$ to 3 that are nonzero over the interval $\lambda_{6} \leq t<\lambda_{7}$.

As above, for the case where $t_{3} \leq t<t_{4}$ (i.e. $\lambda_{6} \leq t<\lambda_{7}$) it follows that:

$$
\begin{aligned}
n=0: & N_{6}^{0}(t)=1 \\
& \left.N_{j}^{0}(t)=0 \text { for all other } j \text { (i.e. except } j=6\right)
\end{aligned}
$$

$$
n=1: \quad N_{6}^{1}(t)=\frac{\left(t-\lambda_{6}\right)}{\left(\lambda_{7}-\lambda_{6}\right)} N_{6}^{0}(t)+\frac{\left(\lambda_{8}-t\right)}{\left(\lambda_{8}-\lambda_{7}\right)} N_{7}^{0}(t)=\frac{\left(t-\lambda_{6}\right)}{\left(\lambda_{7}-\lambda_{6}\right)} N_{6}^{0}(t)
$$

$$
N_{5}^{1}(t)=\frac{\left(t-\lambda_{5}\right)}{\left(\lambda_{6}-\lambda_{5}\right)} N_{5}^{0}(t)+\frac{\left(\lambda_{7}-t\right)}{\left(\lambda_{7}-\lambda_{6}\right)} N_{6}^{0}\left(t_{3}\right)=\frac{\left(\lambda_{7}-t\right)}{\left(\lambda_{7}-\lambda_{6}\right)} N_{6}^{0}(t)
$$

$$
N_{j}^{1}(t)=0 \text { for all other } j \text { (i.e. except } j=6 \text { and 5) }
$$

$$
\begin{aligned}
n=2: \quad N_{6}^{2}(t) & =\frac{\left(t-\lambda_{6}\right)}{\left(\lambda_{8}-\lambda_{6}\right)} N_{6}^{1}(t)+\frac{\left(\lambda_{9}-t\right)}{\left(\lambda_{9}-\lambda_{7}\right)} N_{7}^{1}(t)=\frac{\left(t-\lambda_{6}\right)}{\left(\lambda_{8}-\lambda_{6}\right)} N_{6}^{1}(t) \\
N_{5}^{2}(t) & =\frac{\left(t-\lambda_{5}\right)}{\left(\lambda_{7}-\lambda_{5}\right)} N_{5}^{1}(t)+\frac{\left(\lambda_{8}-t\right)}{\left(\lambda_{8}-\lambda_{6}\right)} N_{6}^{1}(t) \\
N_{4}^{2}(t) & =\frac{\left(t-\lambda_{4}\right)}{\left(\lambda_{6}-\lambda_{4}\right)} N_{4}^{1}(t)+\frac{\left(\lambda_{7}-t\right)}{\left(\lambda_{7}-\lambda_{5}\right)} N_{5}^{1}(t)=\frac{\left(\lambda_{7}-t\right)}{\left(\lambda_{7}-\lambda_{5}\right)} N_{5}^{1}(t)
\end{aligned}
$$

$$
N_{j}^{2}(t)=0 \text { for all other } j \text { (i.e. except } j=6,5 \text { and 4) }
$$

$$
\begin{aligned}
n=3: \quad N_{6}^{3}(t) & =\frac{\left(t-\lambda_{6}\right)}{\left(\lambda_{9}-\lambda_{6}\right)} N_{6}^{2}(t)+\frac{\left(\lambda_{10}-t\right)}{\left(\lambda_{10}-\lambda_{7}\right)} N_{7}^{2}(t)=\frac{\left(t-\lambda_{6}\right)}{\left(\lambda_{9}-\lambda_{6}\right)} N_{6}^{2}(t) \\
N_{5}^{3}(t) & =\frac{\left(t-\lambda_{5}\right)}{\left(\lambda_{8}-\lambda_{5}\right)} N_{5}^{2}(t)+\frac{\left(\lambda_{9}-t\right)}{\left(\lambda_{9}-\lambda_{6}\right)} N_{6}^{2}(t) \\
N_{4}^{3}(t) & =\frac{\left(t-\lambda_{4}\right)}{\left(\lambda_{7}-\lambda_{4}\right)} N_{4}^{2}(t)+\frac{\left(\lambda_{8}-t\right)}{\left(\lambda_{8}-\lambda_{5}\right)} N_{5}^{2}(t) \\
N_{3}^{3}(t) & =\frac{\left(t-\lambda_{3}\right)}{\left(\lambda_{6}-\lambda_{3}\right)} N_{3}^{2}(t)+\frac{\left(\lambda_{7}-t\right)}{\left(\lambda_{7}-\lambda_{4}\right)} N_{4}^{2}(t)=\frac{\left(\lambda_{7}-t\right)}{\left(\lambda_{7}-\lambda_{4}\right)} N_{4}^{2}(t) \\
N_{j}^{3}(t) & =0 \text { for all other } j \text { (i.e. except } j=6,5,4 \text { and } 3)
\end{aligned}
$$

Step 3. Compute the $2^{\text {nd }}$ derivatives of the Bspline basis functions, $N_{j}^{n}(t)$, at t_{0} and t_{m} using the recurrence equation,

$$
\begin{gathered}
{ }^{(\ell)} N_{j}^{n}(t)=n\left(\frac{1}{\left(\lambda_{j+n}-\lambda_{j}\right)}{ }^{(\ell-1)} N_{j}^{n-1}(t)-\frac{1}{\left(\lambda_{j+n+1}-\lambda_{j+1}\right)}{ }^{(\ell-1)} N_{j+1}^{n-1}(t)\right) \\
\text { where } N_{j}^{0}(t)= \begin{cases}1 & \text { for } \lambda_{j} \leq t<\lambda_{j+1} \\
0 & \text { otherwise }\end{cases} \\
\text { and } \ell=\ell^{\text {th }} \text { derivative }
\end{gathered}
$$

First compute $N_{j}^{n}\left(t_{0}\right), n=0$ to 3 where $j=0$ to 3 using the standard Bspline recurrence equation. It turns out that when $t=t_{0}, N_{3}^{n}\left(t_{0}\right)=0$ for $\mathrm{n}=1$ to 3 . With knowledge of the values of $N_{j}^{n}\left(t_{0}\right)$ in hand, the first derivative of $N_{j}^{n}\left(t_{0}\right)$ can be computed as follows:

First derivative of $n=2$ Bspline basis functions at t_{0} (i.e. case $n=2, \ell=1$):

$$
\begin{aligned}
& { }^{(1)} N_{3}^{2}\left(t_{0}\right)=2\left(\frac{1}{\left(\lambda_{5}-\lambda_{3}\right)} N_{3}^{1}\left(t_{0}\right)-\frac{1}{\left(\lambda_{6}-\lambda_{4}\right)} N_{4}^{1}\left(t_{0}\right)\right)=\frac{2}{\left(\lambda_{5}-\lambda_{3}\right)} N_{3}^{1}\left(t_{0}\right)=0 \\
& { }^{(1)} N_{2}^{2}\left(t_{0}\right)=2\left(\frac{1}{\left(\lambda_{4}-\lambda_{2}\right)} N_{2}^{1}\left(t_{0}\right)-\frac{1}{\left(\lambda_{5}-\lambda_{3}\right)} N_{3}^{1}\left(t_{0}\right)\right)=\frac{2}{\left(\lambda_{4}-\lambda_{2}\right)} N_{2}^{1}\left(t_{0}\right) \\
& { }^{(1)} N_{1}^{2}\left(t_{0}\right)=2\left(\frac{1}{\left(\lambda_{3}-\lambda_{1}\right)} N_{1}^{1}\left(t_{0}\right)-\frac{1}{\left(\lambda_{4}-\lambda_{2}\right)} N_{2}^{1}\left(t_{0}\right)\right)=\frac{-2}{\left(\lambda_{4}-\lambda_{2}\right)} N_{2}^{1}\left(t_{0}\right)
\end{aligned}
$$

Knowing ${ }^{(1)} N_{3}^{2}\left(t_{0}\right),{ }^{(1)} N_{2}^{2}\left(t_{0}\right),{ }^{(1)} N_{1}^{2}\left(t_{0}\right)$ enables the second derivative of the $\mathrm{n}=3$ (i.e. cubic) B-splines to be computed as follows:

$$
\begin{aligned}
& n=3, \ell=2: \quad{ }^{(2)} N_{3}^{3}\left(t_{0}\right)=3\left(\frac{1}{\left(\lambda_{6}-\lambda_{3}\right)}{ }^{(1)} N_{3}^{2}\left(t_{0}\right)-\frac{1}{\left(\lambda_{7}-\lambda_{4}\right)}{ }^{(1)} N_{4}^{2}\left(t_{0}\right)\right)=0 \\
& { }^{(2)} N_{2}^{3}\left(t_{0}\right)=3\left({\frac{1}{\left(\lambda_{5}-\lambda_{2}\right)}}^{(1)} N_{2}^{2}\left(t_{0}\right)-{\frac{1}{\left(\lambda_{6}-\lambda_{3}\right)}}^{(1)} N_{3}^{2}\left(t_{0}\right)\right) \\
& { }^{(2)} N_{1}^{3}\left(t_{0}\right)=3\left({\frac{1}{\left(\lambda_{4}-\lambda_{1}\right)}}^{(1)} N_{1}^{2}\left(t_{0}\right)-{\frac{1}{\left(\lambda_{5}-\lambda_{2}\right)}}^{(1)} N_{2}^{2}\left(t_{0}\right)\right) \\
& { }^{(2)} N_{0}^{3}\left(t_{0}\right)=3\left({\frac{1}{\left(\lambda_{3}-\lambda_{0}\right)}}^{(1)} N_{0}^{2}\left(t_{0}\right)-{\left.\frac{1}{\left(\lambda_{4}-\lambda_{1}\right)}{ }^{(1)} N_{1}^{2}\left(t_{0}\right)\right), ~\left(\lambda^{2}\right)}^{(1)}\right.
\end{aligned}
$$

The values of ${ }^{(2)} N_{j}^{n}\left(t_{m}\right)$ can be computed in a similar fashion.

Step 4. Set up the vector matrix equation of the form,

$$
\mathbf{A c}=\mathbf{d}
$$

and solve for the coefficient vector $\mathbf{c}=\mathbf{A}^{-1} \mathbf{d}$ where,

- A is a matrix of dimension $(m+n) \times(m+n)$ containing the Bspline basis function values (and derivatives) evaluated at each $t_{i}, i=0$ to m,
- $\quad \mathbf{c}$ is a coefficient vector of dimension $(m+n) x$, and
- d is a vector of dimension $(m+n) x 1$ containing the desired values of the spline at the points $\mathrm{p}_{\mathrm{i}}, \mathrm{i}=0$ to m (and possibly $1^{\text {st }}$ or $2^{\text {nd }}$ derivative values at points t_{0} and t_{m}).

For the cubic case $(n=3)$ with natural spline endpoint conditions (i.e. second derivative $=0$ at t_{0} and t_{m}),

 the matrix A takes the banded form (where all entries other than the ones shown are assumed to be zero):
\Rightarrow when $n=3$ the matrix \mathbf{A} has ($\mathrm{m}+3$) rows and ($\mathrm{m}+3$) columns)
The vector \mathbf{d} takes the form,

$$
\mathbf{d}=\left[\begin{array}{llllll}
0 & p_{0} & p_{1} & \cdots & p_{m} & 0
\end{array}\right]^{T}
$$

and the coefficient vector \mathbf{c} is determined from the equation,

$$
\mathbf{c}=\mathbf{A}^{-1} \mathbf{d} \quad \text { where } \mathbf{A}^{-1} \text { is the inverse of the matrix } \mathbf{A} .
$$

For example, given the seven points $\left(t_{\mathrm{i}}, p_{\mathrm{i}}\right), i=0$ to 6 shown on the figure of the first page with values,

$$
p_{0}=(0,1), p_{2}=(2,2), p_{3}=(4,2.5), p_{4}=(6,1.5), p_{5}=(8,0.5), p_{6}=(10,0.25)
$$

and the associated knot array,

$$
\left.\begin{array}{rl}
\lambda & =\left[\begin{array}{lll:llllll:lll}
-6 & -4 & -2 & 0 & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16
\end{array} 18\right.
\end{array}\right]
$$

it follows that,
and

$$
\begin{aligned}
& \mathbf{d}=\left[\begin{array}{lllllllllll}
0 & 1 & 2 & 2.5 & 1.5 & 0.5 & .25 & 0 & 0
\end{array}\right]^{T} \\
& \mathbf{A}=\left[\begin{array}{ccccccccc}
0.25 & -0.5 & 0.25 & 0 & 0 & 0 & 0 & 0 & 0 \\
0.167 & 0.667 & 0.167 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0.167 & 0.667 & 0.167 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.167 & 0.667 & 0.167 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.167 & 0.667 & 0.167 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.167 & 0.667 & 0.167 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0.167 & 0.667 & 0.167 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0.167 & 0.667 & 0.167 \\
0 & 0 & 0 & 0 & 0 & 0 & 0.25 & -0.5 & 0.25
\end{array}\right] \\
& \left.\mathbf{c}=\mathbf{A}^{-1} \mathbf{d}=\left[\begin{array}{llllllll}
-0.03 & 1.0 & 2.0301 & 2.8795 & 1.4519 & 0.3128 & 0.2968 & 0
\end{array}\right]-0.297\right]^{T}
\end{aligned}
$$

Computing the Interpolating Bspline function $f(t)$:

Since there are only $n+1$ nonzero basis splines for any value of t, the interpolating Bspline function $f(t)=\sum_{j=0}^{m+n-1} c_{j} N_{j}^{n}(t)$ can be simplified to,

$$
f(t)=\sum_{k=0}^{n} c_{j-k} N_{j-k}^{n}(t)
$$

where j is associated with the interval in which $\lambda_{j} \leq t<\lambda_{j+1}$
Step 1. Given the knot vector λ and a value for t find the value of j such that $\lambda_{j} \leq t<\lambda_{j+1}$
Step 2. Given the value of j determined in Step 1 and the value of t, compute the ($n+1$) Bspline basis functions $N_{j}^{n}(t)$ that are nonzero over the interval $\lambda_{j} \leq t<\lambda_{j+1}$ using the Bspline recurrence equation described previously. For example, when $t=7$ the nonzero Bspline basis functions $N_{j}^{n}(t)$ up to degree $n=3$ that are nonzero over the interval $\lambda_{6} \leq t<\lambda_{7}$ (i.e. $6 \leq t<8$) would be found to be,

$$
\begin{array}{lll}
& & N_{6}^{0}=1 \\
& N_{5}^{1}=\frac{1}{2} & N_{6}^{1}=\frac{1}{2} \\
& N_{4}^{2}=\frac{1}{8} & N_{5}^{2}=\frac{3}{4} \\
N_{3}^{3}=\frac{1}{48} & N_{6}^{2}=\frac{1}{1} \\
N_{4}^{3}=\frac{23}{48} & N_{5}^{3}=\frac{23}{48} & N_{6}^{3}=\frac{1}{48}
\end{array}
$$

Step 3. Assuming the coefficient vector \mathbf{c} has been previously determined, for the cubic case $(n=3)$ the Bpline function $f(t)$ can be evaluated at $\mathrm{t}=7$ as,

$$
f(t)=c_{j-3} N_{j-3}^{3}(t)+c_{j-2} N_{j-2}^{3}(t)+c_{j-1} N_{j-1}^{3}(t)+c_{j} N_{j}^{3}(t)
$$

where j is the index value determined in Step 2.
As shown in the example of Step 2 when $t=7, j=6$ so it follows that,

$$
f(t)=c_{3} N_{3}^{3}(t)+c_{4} N_{4}^{3}(t)+c_{5} N_{5}^{3}(t)+c_{6} N_{6}^{3}(t)
$$

where values for the basis splines $N_{3}^{3}(t=7)=\frac{1}{48}, N_{4}^{3}(t=7)=\frac{23}{48}, N_{5}^{3}(t=7)=\frac{23}{48}, N_{6}^{3}(t=7)=\frac{1}{48}$ at $t=7$ are obtained as shown in Step 2.

