These questions relate to lecture material and aim to highlight the most important concepts. We will cover questions similar to these for our final.

1. Suppose we have a character following a path. The character's current position is $(0.9,0,1)$. We want the character to travel to the waypoint at ($10,0,0$). Write pseudocode that moves the character towards the waypoint using a seek behavior
2. Write pseudocode to find the closest point on a spline by treating it as a piecewise linear curve.
3. Suppose we wish to do pathfinding on a regular grid. Suppose each cell in the grid has width and height equal to 0.1 . Suppose the grid's lower left corner is at position $(0,0)$ and its upper right corner is at position $(10,10)$. Please write code to compute

4a. How many rows and columns are there?
4b. What cell is the position (x, y) in?
4c. What is the center point of cell (i, j)?
4 d . List the neighbors of cell (i, j)
4. Suppose we have the navigation mesh below where the gray shape represents an obstacle. How can we use a graph search algorithm to find a collision-free path between two points?

